Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series

نویسندگان

چکیده

We propose a multiplicative autoregressive conditional proportion (ARCP) model for (0,1)-valued time series, in the spirit of GARCH (generalized heteroscedastic) and ACD (autoregressive duration) models. In particular, our underlying process is defined as product independent identically distributed (i.i.d.) sequence inverted mean, which, turn, depends on past reciprocal observations such way that larger than unity. The probability structure studied context stochastic recurrence equation theory, while estimation parameters performed with exponential quasi-maximum likelihood estimator (EQMLE). consistency asymptotic normality EQMLE are both established under general regularity assumptions. Finally, usefulness proposed illustrated two real datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model

This paper introduces and evaluates new models for time series count data. The Autoregressive Conditional Poisson model (ACP) makes it possible to deal with issues of discreteness, overdispersion (variance greater than the mean) and serial correlation. A fully parametric approach is taken and a marginal distribution for the counts is specified, where conditional on past observations the mean is...

متن کامل

Autoregressive conditional root model

In this paper we develop a time series model which allows long-term disequilibriums to have epochs of non-stationarity, giving the impression that long term relationships between economic variables have temporarily broken down, before they endogenously collapse back towards their long term relationship. This autoregressive root model is shown to be ergodic and covariance stationary under some r...

متن کامل

Multivariate Modelling of Time Series Count Data: An Autoregressive Conditional Poisson Model

This paper introduces a new multivariate model for time series count data. The Multivariate Autoregressive Conditional Poisson model (MACP) makes it possible to deal with issues of discreteness, overdispersion (variance greater than the mean) and both autoand cross-correlation. We model counts as Poisson or double Poisson and assume that conditionally on past observations the means follow a Vec...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Time Series Analysis

سال: 2023

ISSN: ['1467-9892', '0143-9782']

DOI: https://doi.org/10.1111/jtsa.12679